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ABSTRACT 
 

Cloud computing allows business customers to scale up and down their resource usage based on needs. Many of the 

touted gains in the cloud model come from resource multiplexing through virtualization technology. In this paper, 

we present a system that uses virtualization technology to allocate data center resources dynamically based on 

application demands and support green computing by optimizing the number of servers in use. We introduce the 

concept of ―skewness‖ to measure the unevenness in the multidimensional resource utilization of a server. By 

minimizing skewness, we can combine different types of workloads nicely and improve the overall utilization of 

server resources. We develop a set of heuristics that prevent overload in the system effectively while saving energy 

used. Trace driven simulation and experiment results demonstrate that our algorithm achieves good performance. 

Keywords:  multi cloud storage, cloud user, skewness, disaster recovery, reencryption, Green Computing, CMS 
QoS, TTP, CPDP 
 

I. INTRODUCTION 

 

With the advancement of cloud technology, the usage of 

multi cloud server has been constantly increasing for 

easy way of computation and resource allocation. Even 

though there are many advantages of using the multi 

cloud server, there are also some disadvantages in the 

resource allocation and sharing. To overcome this 

disadvantage we implement a new algorithm ―Skewness 

Algorithm‖ involving the concepts of Green Computing. 

The multi cloud server generally incorporates 

infrastructure, platforms, and software to support a huge 

number of clients simultaneously to store and process 

their multimedia application data in a distributed manner 

and meet different multimedia QoS requirements 

through the Internet. Most multimedia applications (e.g., 

audio/video streaming services, etc.) require 

considerable computation, and are often performed on 

mobile devices with constrained power, so that the 

assistance of cloud computing is strongly required. In 

general, cloud service providers offer the utilities based 

on cloud facilities to clients, so that clients do not need 

to take much cost to request multimedia services and 

process multimedia data as well as their computational 

results. 

This paper considers a centralized hierarchical CMS 

composed of a resource manager and a number of server 

clusters, each of which is coordinated by a cluster head, 

and we assume the servers in different server clusters to 

provide different services. Such a CMS is operated as 

follows. Every time when the CMS receives clients’ 

requests for multimedia service tasks, the resource 

manager of the CMS assigns those task requests to 

different server clusters according to the characteristics 

of the requested tasks. Subsequently, the cluster head of 

each server cluster distributes the assigned task to some 

server within the server cluster. It is not hard to observe 

that the load of each server cluster significantly affects 

the performance of the whole CMS. In general, the 

resource manager of the CMS is in pursuit of fairly 

distributing the task load across server clusters, and 

hence, it is of importance and interest to be able to cope 

with load balancing in the CMS. 

 

Objective 

 

We present a system that uses virtualization technology 

to allocate data center resources dynamically based on 

application demands and support green computing by 

optimizing the number of servers in use.   

https://www.google.co.in/search?biw=1440&bih=809&q=uses+virtualization+technology+to+allocate+data+center&spell=1&sa=X&ei=ExITVbbjHZKUuASqoYHoBw&ved=0CBkQvwUoAA
https://www.google.co.in/search?biw=1440&bih=809&q=uses+virtualization+technology+to+allocate+data+center&spell=1&sa=X&ei=ExITVbbjHZKUuASqoYHoBw&ved=0CBkQvwUoAA
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We introduce the concept of ―skewness‖ to measure the 

unevenness in the multidimensional resource utilization 

of a server. By minimizing skewness, we can combine 

different types of workloads nicely and improve the 

overall utilization of server resources. 

 

II. METHODS AND MATERIAL 

 
The following methodologies have been followed. The 

brief explanation is as follows. 

 

A. Multi Cloud Storage 

 

Distributed computing is used to refer to any large 

collaboration in which many individual personal 

computer owners allow some of their computer's 

processing time to be put at the service of a large 

problem. In our system the each cloud admin consist of 

data blocks. The cloud user uploads the data into multi-

cloud. Cloud computing environment is constructed 

based on open architectures and interface; it has the 

capability to incorporate multiple internal and/or 

external cloud services together to provide high 

interoperability. We call such a distributed cloud 

environment as a multi- cloud.  A multi-cloud allows 

clients to easily access his/her resources remotely 

through interfaces. 

 

B. Data Integrity 

Data Integrity is very important in database operations in 

particular and Data warehousing and Business 

intelligence in general. Because Data Integrity ensured 

that data is of high quality, correct, consistent and 

accessible. 

 

C. Cooperative PDP 

Cooperative PDP (CPDP) schemes adopting zero-

knowledge property and     three-layered index hierarchy, 

respectively. In particular efficient method for selecting 

the optimal number of sectors in each block to minimize 

the computation costs of clients and storage service 

providers. Cooperative PDP (CPDP) scheme without 

compromising data privacy based on modern 

cryptographic techniques. 

 

 

D. Third Party Auditor 

Trusted Third Party (TTP) who is trusted to store 

verification parameters and offer public query services 

for these parameters. In our system the Trusted Third 

Party, view the user data blocks and uploaded to the 

distributed cloud. In distributed cloud environment each 

cloud has user data blocks. If any modification tried by 

cloud owner an alert is send to the Trusted Third Party. 

 

E. Cloud User 

The Cloud User who has a large amount of data to be 

stored in multiple clouds and have the permissions to 

access and manipulate stored data.  The User’s Data is 

converted into data blocks. The data block is uploaded to 

the cloud. The TPA views the data blocks and Uploaded 

in multi cloud. The user can update the uploaded data. If 

the user wants to download their files, the data’s in 

multi-cloud is integrated and downloaded. 

F. Disaster Recovery 

Back up a file system to cloud storage, using a least-

common-denominator cloud interface, thus support 

many kinds of cloud services. It uses only one cloud to 

maintain one backup, and focuses on the mechanism in 

local file system, not the cloud platform. Wood proposed 

a new cloud service model, i.e., disaster recovery as a 

cloud service, which leverages the virtual platforms in 

cloud computing to provide data disaster recovery 

service. They created a disaster recovery cloud model 

for web site applications which illustrated that data 

backup built on top of cloud resources can greatly 

reduce the cost of data disaster recovery for corporations. 

However, they didn’t study on how to further improve 

the service quality using multiple clouds. 

G. Reencryption 

In this paper, we solve this problem by proposing a 

time-based re-encryption scheme, which enables the 

cloud servers to automatically re-encrypt data based on 

their internal clocks. Our solution is built on top of a 

new encryption scheme, attribute-based encryption, to 

allow fine-grain access control, and does not require 

perfect clock synchronization for correctness. 
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Figure 1: System Architecture 

 

H. Algorithm  

Genetic algorithm 

In the field of artificial intelligence, a genetic algorithm 

(GA) is a search heuristic that mimics the process of 

natural selection. This heuristic (also sometimes called a 

meta heuristic) is routinely used to generate useful 

solutions to optimization and search problems. Genetic 

algorithms belong to the larger class of evolutionary 

algorithms (EA), which generate solutions to 

optimization problems using techniques inspired by 

natural evolution, such as inheritance, mutation, 

selection, and crossover. 

Genetic algorithms find application in bioinformatics, 

phylogenetic, computational science, engineering, 

economics, chemistry, manufacturing, mathematics, 

physics, pharmacometrics and other fields. 

Methodology 

In a genetic algorithm, a population of candidate 

solutions (called individuals, creatures, or phenotypes) 

to an optimization problem is evolved toward better 

solutions. Each candidate solution has a set of properties 

(its chromosomes or genotype) which can be mutated 

and altered; traditionally, solutions are represented in 

binary as strings of 0s and 1s, but other encodings are 

also possible. 

The evolution usually starts from a population of 

randomly generated individuals, and is an iterative 

process, with the population in each iteration is called a 

generation. In each generation, the fitness of every 

individual in the population is evaluated; the fitness is 

usually the value of the objective function in the 

optimization problem being solved. The more fit 

individuals are stochastically selected from the current 

population, and each individual's genome is modified 

(recombined and possibly randomly mutated) to form a 

new generation. The new generation of candidate 

solutions is then used in the next iteration of the 

algorithm. Commonly, the algorithm terminates when 

either a maximum number of generations has been 

produced, or a satisfactory fitness level has been reached 

for the population. 

A typical genetic algorithm requires: 

1. A genetic representation of the solution domain, 

2. A fitness function to evaluate the solution domain. 

A standard representation of each candidate solution is 

as an array of bits. Arrays of other types and structures 

can be used in essentially the same way. The main 

property that makes these genetic representations 

convenient is that their parts are easily aligned due to 

their fixed size, which facilitates simple crossover 

operations. Variable length representations may also be 

used, but crossover implementation is more complex in 

this case. Tree-like representations are explored in 

genetic programming and graph-form representations 

are explored in evolutionary programming; a mix of 

both linear chromosomes and trees is explored in gene 

expression programming. 

Once the genetic representation and the fitness function 

are defined, a GA proceeds to initialize a population of 

solutions and then to improve it through repetitive 

application of the mutation, crossover, inversion and 

selection operators. 

Initialization 

The population size depends on the nature of the 

problem, but typically contains several hundreds or 

thousands of possible solutions. Often, the initial 

population is generated randomly, allowing the entire 

range of possible solutions (the search space). 

Occasionally, the solutions may be "seeded" in areas 

where optimal solutions are likely to be found. 

http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Heuristic_(computer_science)
http://en.wikipedia.org/wiki/Natural_selection
http://en.wikipedia.org/wiki/Metaheuristic
http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Evolutionary_algorithm
http://en.wikipedia.org/wiki/Evolutionary_algorithm
http://en.wikipedia.org/wiki/Heredity
http://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
http://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Bioinformatics
http://en.wikipedia.org/wiki/Phylogenetics
http://en.wikipedia.org/wiki/Computational_science
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Economics
http://en.wikipedia.org/wiki/Chemistry
http://en.wikipedia.org/wiki/Manufacturing
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Pharmacometrics
http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Phenotype
http://en.wikipedia.org/wiki/Chromosome
http://en.wikipedia.org/wiki/Genotype
http://en.wikipedia.org/wiki/Iteration
http://en.wikipedia.org/wiki/Iteration
http://en.wikipedia.org/wiki/Fitness_(biology)
http://en.wikipedia.org/wiki/Objective_function
http://en.wikipedia.org/wiki/Stochastics
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Genetic_representation
http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Bit_array
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Genetic_programming
http://en.wikipedia.org/wiki/Evolutionary_programming
http://en.wikipedia.org/wiki/Gene_expression_programming
http://en.wikipedia.org/wiki/Gene_expression_programming
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Selection 

During each successive generation, a proportion of the 

existing population is selected to breed a new generation. 

Individual solutions are selected through a fitness-based 

process, where fitter solutions (as measured by a fitness 

function) are typically more likely to be selected. 

Certain selection methods rate the fitness of each 

solution and preferentially select the best solutions. 

Other methods rate only a random sample of the 

population, as the former process may be very time-

consuming. 

The fitness function is defined over the genetic 

representation and measures the quality of the 

represented solution. The fitness function is always 

problem dependent. For instance, in the knapsack 

problem one wants to maximize the total value of 

objects that can be put in a knapsack of some fixed 

capacity. A representation of a solution might be an 

array of bits, where each bit represents a different object, 

and the value of the bit (0 or 1) represents whether or not 

the object is in the knapsack. Not every such 

representation is valid, as the size of objects may exceed 

the capacity of the knapsack. The fitness of the solution 

is the sum of values of all objects in the knapsack if the 

representation is valid or 0 otherwise. 

In some problems, it is hard or even impossible to define 

the fitness expression; in these cases, a simulation may 

be used to determine the fitness function value of a 

phenotype (e.g. computational fluid dynamics is used to 

determine the air resistance of a vehicle whose shape is 

encoded as the phenotype), or even interactive genetic 

algorithms are used. 

Genetic operators 

The next step is to generate a second generation 

population of solutions from those selected through a 

combination of genetic operators: crossover (also called 

recombination), and mutation. 

For each new solution to be produced, a pair of "parent" 

solutions is selected for breeding from the pool selected 

previously. By producing a "child" solution using the 

above methods of crossover and mutation, a new 

solution is created which typically shares many of the 

characteristics of its "parents". New parents are selected 

for each new child, and the process continues until a 

new population of solutions of appropriate size is 

generated. Although reproduction methods that are 

based on the use of two parents are more "biology 

inspired", some research suggests that more than two 

"parents" generate higher quality chromosomes. 

These processes ultimately result in the next generation 

population of chromosomes that is different from the 

initial generation. Generally the average fitness will 

have increased by this procedure for the population, 

since only the best organisms from the first generation 

are selected for breeding, along with a small proportion 

of less fit solutions. These less fit solutions ensure 

genetic diversity within the genetic pool of the parents 

and therefore ensure the genetic diversity of the 

subsequent generation of children. 

Opinion is divided over the importance of crossover 

versus mutation. There are many references in Fogel 

(2006) that support the importance of mutation-based 

search. 

Although crossover and mutation are known as the main 

genetic operators, it is possible to use other operators 

such as regrouping, colonization-extinction, or migration 

in genetic algorithms. 

It is worth tuning parameters such as the mutation 

probability, crossover probability and population size to 

find reasonable settings for the problem class being 

worked on. A very small mutation rate may lead to 

genetic drift (which is non-ergodic in nature). A 

recombination rate that is too high may lead to 

premature convergence of the genetic algorithm. A 

mutation rate that is too high may lead to loss of good 

solutions, unless elitist selection is employed. 

Termination 

This generational process is repeated until a termination 

condition has been reached. Common terminating 

conditions are: 

 A solution is found that satisfies minimum criteria. 

 Fixed number of generations reached. 

 Allocated budget (computation time/money) reached. 

 The highest ranking solution's fitness is reaching or 

has reached a plateau such that successive iterations 

http://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
http://en.wikipedia.org/wiki/Fitness_(biology)
http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Knapsack_problem
http://en.wikipedia.org/wiki/Knapsack_problem
http://en.wikipedia.org/wiki/Computer_simulation
http://en.wikipedia.org/wiki/Computational_fluid_dynamics
http://en.wikipedia.org/wiki/Interactive_evolutionary_computation
http://en.wikipedia.org/wiki/Interactive_evolutionary_computation
http://en.wikipedia.org/wiki/Genetic_operator
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
http://en.wikipedia.org/wiki/David_B._Fogel
http://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Genetic_drift
http://en.wikipedia.org/wiki/Ergodicity
http://en.wikipedia.org/wiki/Genetic_algorithm#Elitism
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no longer produce better results 

 Manual inspection 

 Combinations of the above 

The building block hypothesis 

Genetic algorithms are simple to implement, but their 

behavior is difficult to understand. In particular it is 

difficult to understand why these algorithms frequently 

succeed at generating solutions of high fitness when 

applied to practical problems. The building block 

hypothesis (BBH) consists of: 

 A description of a heuristic that performs adaptation 

by identifying and recombining "building blocks", 

i.e. low order, low defining-length schemata with 

above average fitness. 

 A hypothesis that a genetic algorithm performs 

adaptation by implicitly and efficiently 

implementing this heuristic. 

Goldberg describes the heuristic as follows: 

"Short, low order, and highly fit schemata are sampled, 

recombined [crossed over], and resampled to form 

strings of potentially higher fitness. In a way, by 

working with these particular schemata [the building 

blocks], we have reduced the complexity of our problem; 

instead of building high-performance strings by trying 

every conceivable combination, we construct better and 

better strings from the best partial solutions of past 

samplings. 

 

"Because highly fit schemata of low defining length and 

low order play such an important role in the action of 

genetic algorithms, we have already given them a 

special name: building blocks. Just as a child creates 

magnificent fortresses through the arrangement of 

simple blocks of wood, so does a genetic algorithm seek 

near optimal performance through the juxtaposition of 

short, low-order, high-performance schemata, or 

building blocks." 

Limitations 

There are limitations of the use of a genetic algorithm 

compared to alternative optimization algorithms: 

Repeated fitness function evaluation for complex 

problems is often the most prohibitive and limiting 

segment of artificial evolutionary algorithms. Finding 

the optimal solution to complex high-dimensional, 

multimodal problems often requires very expensive 

fitness function evaluations. In real world problems such 

as structural optimization problems, a single function 

evaluation may require several hours to several days of 

complete simulation. Typical optimization methods can 

not deal with such types of problem. In this case, it may 

be necessary to forgo an exact evaluation and use an 

approximated fitness that is computationally efficient. It 

is apparent that amalgamation of approximate models 

may be one of the most promising approaches to 

convincingly use GA to solve complex real life 

problems. 

Genetic algorithms do not scale well with complexity. 

That is, where the number of elements which are 

exposed to mutation is large there is often an 

exponential increase in search space size. This makes it 

extremely difficult to use the technique on problems 

such as designing an engine, a house or plane. In order 

to make such problems tractable to evolutionary search, 

they must be broken down into the simplest 

representation possible. Hence we typically see 

evolutionary algorithms encoding designs for fan blades 

instead of engines, building shapes instead of detailed 

construction plans, airfoils instead of whole aircraft 

designs. The second problem of complexity is the issue 

of how to protect parts that have evolved to represent 

good solutions from further destructive mutation, 

particularly when their fitness assessment requires them 

to combine well with other parts. 

The "better" solution is only in comparison to other 

solutions. As a result, the stop criterion is not clear in 

every problem. 

In many problems, GAs may have a tendency to 

converge towards local optima or even arbitrary points 

rather than the global optimum of the problem. This 

means that it does not "know how" to sacrifice short-

term fitness to gain longer-term fitness. The likelihood 

of this occurring depends on the shape of the fitness 

landscape: certain problems may provide an easy ascent 

towards a global optimum, others may make it easier for 

the function to find the local optima. This problem may 

be alleviated by using a different fitness function, 

http://en.wikipedia.org/wiki/Schema_(genetic_algorithms)
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Fitness_approximation
http://en.wikipedia.org/wiki/Fitness_approximation
http://en.wikipedia.org/wiki/Local_optimum
http://en.wikipedia.org/wiki/Global_optimum
http://en.wikipedia.org/wiki/Fitness_landscape
http://en.wikipedia.org/wiki/Fitness_landscape
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increasing the rate of mutation, or by using selection 

techniques that maintain a diverse population of 

solutions, although the No Free Lunch theorem proves 

that there is no general solution to this problem. A 

common technique to maintain diversity is to impose a 

"niche penalty", wherein, any group of individuals of 

sufficient similarity (niche radius) have a penalty added, 

which will reduce the representation of that group in 

subsequent generations, permitting other (less similar) 

individuals to be maintained in the population. This trick, 

however, may not be effective, depending on the 

landscape of the problem. Another possible technique 

would be to simply replace part of the population with 

randomly generated individuals, when most of the 

population is too similar to each other. Diversity is 

important in genetic algorithms (and genetic 

programming) because crossing over a homogeneous 

population does not yield new solutions. In evolution 

strategies and evolutionary programming, diversity is 

not essential because of a greater reliance on mutation. 

Operating on dynamic data sets is difficult, as genomes 

begin to converge early on towards solutions which may 

no longer be valid for later data. Several methods have 

been proposed to remedy this by increasing genetic 

diversity somehow and preventing early convergence, 

either by increasing the probability of mutation when the 

solution quality drops (called triggered hyper mutation), 

or by occasionally introducing entirely new, randomly 

generated elements into the gene pool (called random 

immigrants). Again, evolution strategies and 

evolutionary programming can be implemented with a 

so-called "comma strategy" in which parents are not 

maintained and new parents are selected only from 

offspring. This can be more effective on dynamic 

problems. 

GAs cannot effectively solve problems in which the only 

fitness measure is a single right/wrong measure (like 

decision problems), as there is no way to converge on 

the solution (no hill to climb). In these cases, a random 

search may find a solution as quickly as a GA. However, 

if the situation allows the success/failure trial to be 

repeated giving (possibly) different results, then the ratio 

of successes to failures provides a suitable fitness 

measure. 

For specific optimization problems and problem 

instances, other optimization algorithms may be 

more efficient than genetic algorithms in terms of 

speed of convergence. Alternative and 

complementary algorithms include evolution 

strategies, evolutionary programming, simulated 

annealing, Gaussian adaptation, hill climbing, and 

swarm intelligence (e.g.: ant colony optimization, 

particle swarm optimization) and methods based on 

integer linear programming. The suitability of 

genetic algorithms is dependent on the amount of 

knowledge of the problem; well-known problems 

often have better, more specialized approaches. 

Variants 

Chromosome representation 

The simplest algorithm represents each chromosome as 

a bit string. Typically, numeric parameters can be 

represented by integers, though it is possible to use 

floating point representations. The floating point 

representation is natural to evolution strategies and 

evolutionary programming. The notion of real-valued 

genetic algorithms has been offered but is really a 

misnomer because it does not really represent the 

building block theory that was proposed by John Henry 

Holland in the 1970s. This theory is not without support 

though, based on theoretical and experimental results 

(see below). The basic algorithm performs crossover and 

mutation at the bit level. Other variants treat the 

chromosome as a list of numbers which are indexes into 

an instruction table, nodes in a linked list, hashes, 

objects, or any other imaginable data structure. 

Crossover and mutation are performed so as to respect 

data element boundaries. For most data types, specific 

variation operators can be designed. Different 

chromosomal data types seem to work better or worse 

for different specific problem domains. 

When bit-string representations of integers are used, 

Gray coding is often employed. In this way, small 

changes in the integer can be readily affected through 

mutations or crossovers. This has been found to help 

prevent premature convergence at so called Hamming 

walls, in which too many simultaneous mutations (or 

crossover events) must occur in order to change the 

chromosome to a better solution. 

Other approaches involve using arrays of real-valued 

numbers instead of bit strings to represent chromosomes. 

http://en.wikipedia.org/wiki/No_free_lunch_in_search_and_optimization
http://en.wikipedia.org/wiki/Genetic_programming
http://en.wikipedia.org/wiki/Genetic_programming
http://en.wikipedia.org/wiki/Evolution_strategy
http://en.wikipedia.org/wiki/Evolution_strategy
http://en.wikipedia.org/wiki/Evolutionary_programming
http://en.wikipedia.org/wiki/Evolution_strategy
http://en.wikipedia.org/wiki/Evolutionary_programming
http://en.wikipedia.org/wiki/Decision_problem
http://en.wikipedia.org/wiki/Evolution_strategy
http://en.wikipedia.org/wiki/Evolution_strategy
http://en.wikipedia.org/wiki/Evolutionary_programming
http://en.wikipedia.org/wiki/Simulated_annealing
http://en.wikipedia.org/wiki/Simulated_annealing
http://en.wikipedia.org/wiki/Gaussian_adaptation
http://en.wikipedia.org/wiki/Hill_climbing
http://en.wikipedia.org/wiki/Swarm_intelligence
http://en.wikipedia.org/wiki/Ant_colony_optimization
http://en.wikipedia.org/wiki/Particle_swarm_optimization
http://en.wikipedia.org/wiki/Integer_linear_programming
http://en.wikipedia.org/wiki/Bit_array
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/Evolution_strategy
http://en.wikipedia.org/wiki/Evolutionary_programming
http://en.wikipedia.org/wiki/John_Henry_Holland
http://en.wikipedia.org/wiki/John_Henry_Holland
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Gray_coding
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Results from the theory of schemata suggest that in 

general the smaller the alphabet, the better the 

performance, but it was initially surprising to researchers 

that good results were obtained from using real-valued 

chromosomes. This was explained as the set of real 

values in a finite population of chromosomes as forming 

a virtual alphabet (when selection and recombination 

are dominant) with a much lower cardinality than would 

be expected from a floating point representation. 

Elitism 

A practical variant of the general process of constructing 

a new population is to allow the best organism(s) from 

the current generation to carry over to the next, unaltered. 

This strategy is known as elitist selection and guarantees 

that the solution quality obtained by the GA will not 

decrease from one generation to the next. 

Parallel implementations 

Parallel implementations of genetic algorithms come in 

two flavors. Coarse-grained parallel genetic algorithms 

assume a population on each of the computer nodes and 

migration of individuals among the nodes. Fine-grained 

parallel genetic algorithms assume an individual on each 

processor node which acts with neighboring individuals 

for selection and reproduction. Other variants, like 

genetic algorithms for online optimization problems, 

introduce time-dependence or noise in the fitness 

function. 

Adaptive GAs 

Genetic algorithms with adaptive parameters (adaptive 

genetic algorithms, AGAs) is another significant and 

promising variant of genetic algorithms. The 

probabilities of crossover (pc) and mutation (pm) greatly 

determine the degree of solution accuracy and the 

convergence speed that genetic algorithms can obtain. 

Instead of using fixed values of pc and pm, AGAs utilize 

the population information in each generation and 

adaptively adjust the pc and pm in order to maintain the 

population diversity as well as to sustain the 

convergence capacity. In AGA (adaptive genetic 

algorithm), the adjustment of pc and pm depends on the 

fitness values of the solutions. In CAGA (clustering-

based adaptive genetic algorithm),
[13]

 through the use of 

clustering analysis to judge the optimization states of the 

population, the adjustment of pc and pm depends on 

these optimization states. It can be quite effective to 

combine GA with other optimization methods. GA tends 

to be quite good at finding generally good global 

solutions, but quite inefficient at finding the last few 

mutations to find the absolute optimum. Other 

techniques (such as simple hill climbing) are quite 

efficient at finding absolute optimum in a limited region. 

Alternating GA and hill climbing can improve the 

efficiency of GA while overcoming the lack of 

robustness of hill climbing. 

This means that the rules of genetic variation may have a 

different meaning in the natural case. For instance – 

provided that steps are stored in consecutive order – 

crossing over may sum a number of steps from maternal 

DNA adding a number of steps from paternal DNA and 

so on. This is like adding vectors that more probably 

may follow a ridge in the phenotypic landscape. Thus, 

the efficiency of the process may be increased by many 

orders of magnitude. Moreover, the inversion operator 

has the opportunity to place steps in consecutive order or 

any other suitable order in favor of survival or efficiency. 

(See for instance or example in travelling salesman 

problem, in particular the use of an edge recombination 

operator.) 

A variation, where the population as a whole is evolved 

rather than its individual members, is known as gene 

pool recombination. 

A number of variations have been developed to attempt 

to improve performance of GAs on problems with a high 

degree of fitness epistasis, i.e. where the fitness of a 

solution consists of interacting subsets of its variables. 

Such algorithms aim to learn (before exploiting) these 

beneficial phenotypic interactions. As such, they are 

aligned with the Building Block Hypothesis in 

adaptively reducing disruptive recombination. 

Prominent examples of this approach include the mGA, 

GEMGA and LLGA. 

Problem domains 

Problems which appear to be particularly appropriate for 

solution by genetic algorithms include timetabling and 

scheduling problems, and many scheduling software 

packages are based on GAs
 [citation needed]

. GAs has also 

been applied to engineering. Genetic algorithms are 

http://en.wikipedia.org/wiki/Genetic_algorithm#cite_note-13
http://en.wikipedia.org/wiki/Chromosomal_inversion
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/Edge_recombination_operator
http://en.wikipedia.org/wiki/Edge_recombination_operator
http://en.wikipedia.org/wiki/Timeline
http://en.wikipedia.org/wiki/Wikipedia:Citation_needed
http://en.wikipedia.org/wiki/Engineering
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often applied as an approach to solve global 

optimization problems. 

As a general rule of thumb genetic algorithms might be 

useful in problem domains that have a complex fitness 

landscape as mixing, i.e., mutation in combination with 

crossover, is designed to move the population away 

from local optima that a traditional hill climbing 

algorithm might get stuck in. Observe that commonly 

used crossover operators cannot change any uniform 

population. Mutation alone can provide periodicity of 

the overall genetic algorithm process (seen as a Markov 

chain). 

Examples of problems solved by genetic algorithms 

include: mirrors designed to funnel sunlight to a solar 

collector, antennae designed to pick up radio signals in 

space, and walking methods for computer figures. 

In his Algorithm Design Manual, Skiena advises against 

genetic algorithms for any task: 

It is quite unnatural to model applications in terms of 

genetic operators like mutation and crossover on bit 

strings. The pseudo-biology adds another level of 

complexity between you and your problem. Second, 

genetic algorithms take a very long time on nontrivial 

problems. [...] [T]he analogy with evolution—where 

significant progress require millions of years—can be 

quite appropriate. 

I have never encountered any problem where genetic 

algorithms seemed to me the right way to attack it. 

Further, I have never seen any computational results 

reported using genetic algorithms that have favorably 

impressed me. Stick to simulated annealing for your 

heuristic search voodoo needs.  

 

III. RESULTS AND DISCUSSION 

 
This section first explains how the data used in 

experiments were generated and the experimental 

environment, and then gives the experimental   results of 

a variety of cases. 

 

 

 

A. Data and Simulation Environment 

 

We consider an instance with 20 server clusters (m = 20) 

and 100 clients (n = 100). The weight of each link is 

bounded in the range [0; 5] in general. That is, the 

normalizing factor of the first term in Objective (3) is 5 

* 100 = 500, while that of the second term is 100. If the 

link is infeasible, its weight is set 1000, which is viewed 

as infinity in our experiments. 

 

In our experiments, unless otherwise described in the 

rest of this paper, our GA algorithm applies the 

parameter settings in Table I, in which there are 200 

generations at most; there are 50 chromosomes in a 

generation; the time period between two time steps is the 

time taken by 20 generations of the main loop of the GA 

algorithm. That is, clients move at each time step, and 

their corresponding criteria are measured at every 20 

generations. In addition, after a lot of tests, are chosen. 

 

Our simulation was tested on an Intel Core i7-3770 CPU 

@ 3.40 GHz with 16 GB memory. The average running 

time for determining a placement of an instance (i.e., 20 

generations) is about 0.0005 seconds. It implies that our 

GA has the ability to efficiently cope with the CMS-

dynMLB problem. 

 

B. Experimental Results 

 

To the best of our understanding, there were no previous 

works that studied our concerned problem. As a result, 

we conduct a comprehensive experimental analysis on 

adjustment of parameters. First, in order to observe the 

convergence of the best cost values in our GA method, 

we plot the best cost values versus the number of 

generations of our GA under a variety of parameters in 

Figure 2, from which each plot is convergent to a fixed 

value, which implies that our GA has the ability to make 

the solutions to be convergent. 

 

In order to demonstrate the ability of our approach to 

adapt the time changes (where we suppose that the 

topology graph changes in each 20 generations), we run 

200 generations of our GA on the test instance in a 

dynamic scenario, and its plots of best cost values versus 

the iteration number under three different m values are 

given in Figure 3. The dynamic scenario assumes that all 

of the clients change their locations in each 20 

generations in Figure 3, from which we observe that 

http://en.wikipedia.org/wiki/Global_optimization
http://en.wikipedia.org/wiki/Global_optimization
http://en.wikipedia.org/wiki/Fitness_landscape
http://en.wikipedia.org/wiki/Fitness_landscape
http://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Local_optima
http://en.wikipedia.org/wiki/Hill_climbing
http://en.wikipedia.org/wiki/Markov_chain
http://en.wikipedia.org/wiki/Markov_chain
http://en.wikipedia.org/wiki/Steven_Skiena
http://en.wikipedia.org/wiki/Simulated_annealing
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every time when clients change their location in each 20 

generations, the cost value goes to a large value, and 

later converges by our GA approach. In addition, we 

also observe that from (a) to (c) more clients provide 

more resources, so that the plots turn out to be a plat 

region more quickly. 

 

IV. CONCLUSION 

 
A genetic algorithm approach for optimizing the 

dynamic multi-service load balancing in cloud-based 

multimedia system (CMS-dynMLB) has been proposed 

and implemented. The main difference of our model 

from previous models is that we consider a practical 

multi-service dynamic scenario in which at different 

time steps, clients can change their location and each 

server cluster only handles a specific type of multimedia 

tasks, so that two performance objectives are optimized 

at the same time. The main features of this paper include 

not only the proposal of a mathematical formulation of 

the CMS-dynMLB problem but also a theoretical 

analysis for the algorithm convergence. Detailed 

simulation has also been conducted to show the 

performance of our GA approach. 

 

V. REFERENCES 

 
[1] W. Zhu, C. Luo, J. Wang, and S. Li, ―Multimedia cloud 

computing:An emerging technology for providing multimedia 
services and applications,‖ IEEE Signal Processing Magazine, 
vol. 28, no. 3, pp. 59–69, 2011. 

[2] C.F.Lai, Y.M.Huang and H.C. Chao, ―DLNA-based multimedia 
sharing system over OSGI framework with extension to P2P 
network,‖IEEE Systems Journal, vol. 4, no. 2, pp. 262–270, 
2010. 

[3] W. Hui, H. Zhao, C. Lin, and Y. Yang, ―Effective load 
balancing for cloud-based multimedia system,‖ in Proceedings 
of 2011 International Conference on Electronic & Mechanical 
Engineering and Information Technology. IEEE Press, 2011, 
pp. 165–168. 

[4] C.Y.Chen, H.C.Chao, S.Y.Kuo, and K.D.Chang, ―Rule-based 
intrusion detection mechanism for IP multimedia subsystem,‖ 
Journal of Internet Technology, vol. 9, no. 5, pp. 329–336, 
2008. 

[5] R.Yavatkar, D.Pendarakis, and R. Guerin, ―A framework for 
policy based admission control,‖ Internet Requests for 
Comments, RFC Editor, RFC 2753, 2000. 

[6] D.Niyato and E.Hossain, ―Integration of WiMAX and Wi-Fi: 
Optimal pricing for bandwidth sharing,‖ IEEE Communication 
Magazine, vol. 45, no. 5, pp. 140–146, 2007. 

[7] C.Y.Chang, T.Y.Wu, C.C.Huang, A.J.W.Whang, and 
H.C.Chao, ―Robust header compression with load balance and 
dynamic bandwidth aggregation capabilities in WLAN,‖ Journal 
of Internet Technology, vol. 8, no. 3, pp. 365–372, 2007. 

[8] J.Sun, X.Wu, and X.Sha, ―Load balancing algorithm with 
multiservice in heterogeneous wireless networks,‖ in 
Proceedings of 6th International ICST Conference on 
Communications and Networking in China (ChinaCom 2011). 
IEEE Press, 2011, pp. 703–707. 

[9] H.Son, S.Lee, S.C.Kim, and Y.S.Shin, ―Soft load balancing over 
heterogeneous wireless networks,‖ IEEE Transactions on 
Vehicular Technology, vol. 57, no. 4, pp. 2632–2638, 2008. 

[10] L.Zhou, H.C.Chao, and A.V.Vasilakos, ―Joint forensics-
scheduling strategy for delay-sensitive multimedia applications 
over heterogeneous networks,‖ IEEE Journal on Selected Areas 
of Communications, vol. 29, no. 7, pp. 1358–1367, 2011. 

[11] X.Nan, Y.He, and L.Guan, ―Optimal resource allocation for 
multimedia cloud based on queuing model,‖ in Proceedings of 
2011 IEEE 13th International Workshop on Multimedia Signal 
Processing (MMSP 2011). IEEE Press, 2011, pp. 1–6. 

[12] M.Garey and D. Johnson, Computers and Intractability - A 
Guide to the Theory of NP-Completeness. Freeman, San 
Francisco, 1979. 

[13] S.Kirkpatrik, C.Gelatt, and M.Vecchi, ―Optimization by 
simulated annealing,‖ Science, vol. 220, pp. 671–680, 1983. 

[14] J. H. Holland, Adaptation in Natural and Artificial Systems, 
University of Michigan Press, 1975. 

[15] J.Kennedy and R.Eberhart, ―Particle swarm optimization,‖ in 
Proceedings of IEEE International Conference on Neural 
Networks. IEEE Press, 1995, p. 1942V1948. 

[16] Y.Shi and R.Eberhart, ―A modified particle swarm optimizer,‖ 
in Proceedings of IEEE International Conference on 
Evolutionary Computation. IEEE Press, 1998, pp. 69–73. 

[17] X.Zhang, S.Hu, D.Chen, and X.Li, ―Fast covariance matching 
with fuzzy genetic algorithm,‖ IEEE Transactions on Industrial 
Engineering, vol. 8, no. 1, pp. 148–157, 2012. 

[18] W.Ip, D.Wang, and V.Cho, ―Aircraft ground service scheduling 
problems and their genetic algorithm with hybrid assignment 
and sequence encoding scheme,‖ IEEE Systems Journal, 2012, 
to appear. 

[19] F.Gonzalez-Longatt, P.Wall, P.Regulski, and V.Terzija, 
―Optimal electric network design for a large offshore wind farm 
based on a modified genetic algorithm approach,‖ IEEE 
Systems Journal, vol. 6, no. 1, pp. 164–172, 2012. 

[20] H.Cheng and S.Yang, ―Genetic algorithms with immigrants 
schemes for dynamic multicast problems in mobile ad hoc 
networks,‖ Engineering Applications of Artificial Intelligence, 
vol. 23, no. 5, pp. 806–819, 2010. 

[21] R.Van den Bossche, K.Vanmechelen, and J.Broeckhove, ―Cost-
optimal scheduling in hybrid IaaS clouds for deadline 
constrained workloads,‖ in Proceedings of 2010 IEEE 3rd 
International Conference on Cloud Computing. IEEE Press, 
2010, pp. 228–235. 

[22] K.P.Chow and Y.K.Kwok, ―On load balancing for distributed 
Multi agent computing,‖ IEEE Transactions on Parallel and 
Distributed Systems, vol. 13, no. 8, pp. 787–801, 2002. 

[23] X.Qin, H.Jiang, A.Manzanares, X.Ruan, and S.Yin, 
―Communication aware load balancing for parallel applications 
on clusters,‖ IEEE Transactions on Computers, vol. 59, no. 1, 
pp. 42–52, 2010. 

[24] A.Y.Zomaya and Y.H.Teh, ―Observations on using genetic 
algorithms for dynamic load-balancing,‖ IEEE Transactions on 
Parallel and Distributed Systems, vol. 12, no. 9, pp. 899–911, 
2001. 

[25] Y.M.Huang, M.Y.Hsieh, H.C.Chao, S.H.Hung, and J.H.Park, 
―Pervasive, secure access to a hierarchical-based healthcare 
monitoring architecture in wireless heterogeneous sensor 
networks,‖ IEEE Journal on Selected Areas of Communications, 
vol. 27, no. 4, pp. 400–411, 2009. 

[26] L.Yang and M.Guo, High-performance Computing: Paradigm 
and Infrastructure John Wiley and Sons, 2006. 

[27] T.Y.Wu, H.C.Chao, and C.Y.Huang, ―A survey of mobile IP in 
cellular and mobile ad-hoc network environments,‖ Ad Hoc 
Networks Journal, vol. 3, no. 3, pp. 351–370, 2005. 

[28] Q.Yuan, F.Qian, and W.Du, ―A hybrid genetic algorithm with 
the Baldwin effect,‖ Information Sciences, vol. 180, no. 5, pp. 
640–652, 2010. 

[29] S.Ross, Introduction to Probability Models, 10th ed. Academic 
Press, 2009. 


