
IJSRSET152273 | Received: 20 March 2015 | Accepted: 26 March 2015 | March-April 2015 [(1)2: 221-229]

© 2015 IJSRSET | Volume 1 | Issue 2 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

221

Overload Avoidance for Dynamic Virtual Machine Resource Allocation
Environment

Pillapakam Sridharan Srivatsan, M Manimaran, V Manikandan, M. Murugesan
Dhanalakshmi College of Engineering, Chennai, Tamilnadu, India

ABSTRACT

Cloud computing allows business customers to scale up and down their resource usage based on needs. Many of the

touted gains in the cloud model come from resource multiplexing through virtualization technology. In this paper,

we present a system that uses virtualization technology to allocate data center resources dynamically based on

application demands and support green computing by optimizing the number of servers in use. We introduce the

concept of ―skewness‖ to measure the unevenness in the multidimensional resource utilization of a server. By

minimizing skewness, we can combine different types of workloads nicely and improve the overall utilization of

server resources. We develop a set of heuristics that prevent overload in the system effectively while saving energy

used. Trace driven simulation and experiment results demonstrate that our algorithm achieves good performance.

Keywords: multi cloud storage, cloud user, skewness, disaster recovery, reencryption, Green Computing, CMS
QoS, TTP, CPDP

I. INTRODUCTION

With the advancement of cloud technology, the usage of

multi cloud server has been constantly increasing for

easy way of computation and resource allocation. Even

though there are many advantages of using the multi

cloud server, there are also some disadvantages in the

resource allocation and sharing. To overcome this

disadvantage we implement a new algorithm ―Skewness

Algorithm‖ involving the concepts of Green Computing.

The multi cloud server generally incorporates

infrastructure, platforms, and software to support a huge

number of clients simultaneously to store and process

their multimedia application data in a distributed manner

and meet different multimedia QoS requirements

through the Internet. Most multimedia applications (e.g.,

audio/video streaming services, etc.) require

considerable computation, and are often performed on

mobile devices with constrained power, so that the

assistance of cloud computing is strongly required. In

general, cloud service providers offer the utilities based

on cloud facilities to clients, so that clients do not need

to take much cost to request multimedia services and

process multimedia data as well as their computational

results.

This paper considers a centralized hierarchical CMS

composed of a resource manager and a number of server

clusters, each of which is coordinated by a cluster head,

and we assume the servers in different server clusters to

provide different services. Such a CMS is operated as

follows. Every time when the CMS receives clients’

requests for multimedia service tasks, the resource

manager of the CMS assigns those task requests to

different server clusters according to the characteristics

of the requested tasks. Subsequently, the cluster head of

each server cluster distributes the assigned task to some

server within the server cluster. It is not hard to observe

that the load of each server cluster significantly affects

the performance of the whole CMS. In general, the

resource manager of the CMS is in pursuit of fairly

distributing the task load across server clusters, and

hence, it is of importance and interest to be able to cope

with load balancing in the CMS.

Objective

We present a system that uses virtualization technology

to allocate data center resources dynamically based on

application demands and support green computing by

optimizing the number of servers in use.

https://www.google.co.in/search?biw=1440&bih=809&q=uses+virtualization+technology+to+allocate+data+center&spell=1&sa=X&ei=ExITVbbjHZKUuASqoYHoBw&ved=0CBkQvwUoAA
https://www.google.co.in/search?biw=1440&bih=809&q=uses+virtualization+technology+to+allocate+data+center&spell=1&sa=X&ei=ExITVbbjHZKUuASqoYHoBw&ved=0CBkQvwUoAA

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

222

We introduce the concept of ―skewness‖ to measure the

unevenness in the multidimensional resource utilization

of a server. By minimizing skewness, we can combine

different types of workloads nicely and improve the

overall utilization of server resources.

II. METHODS AND MATERIAL

The following methodologies have been followed. The

brief explanation is as follows.

A. Multi Cloud Storage

Distributed computing is used to refer to any large

collaboration in which many individual personal

computer owners allow some of their computer's

processing time to be put at the service of a large

problem. In our system the each cloud admin consist of

data blocks. The cloud user uploads the data into multi-

cloud. Cloud computing environment is constructed

based on open architectures and interface; it has the

capability to incorporate multiple internal and/or

external cloud services together to provide high

interoperability. We call such a distributed cloud

environment as a multi- cloud. A multi-cloud allows

clients to easily access his/her resources remotely

through interfaces.

B. Data Integrity

Data Integrity is very important in database operations in

particular and Data warehousing and Business

intelligence in general. Because Data Integrity ensured

that data is of high quality, correct, consistent and

accessible.

C. Cooperative PDP

Cooperative PDP (CPDP) schemes adopting zero-

knowledge property and three-layered index hierarchy,

respectively. In particular efficient method for selecting

the optimal number of sectors in each block to minimize

the computation costs of clients and storage service

providers. Cooperative PDP (CPDP) scheme without

compromising data privacy based on modern

cryptographic techniques.

D. Third Party Auditor

Trusted Third Party (TTP) who is trusted to store

verification parameters and offer public query services

for these parameters. In our system the Trusted Third

Party, view the user data blocks and uploaded to the

distributed cloud. In distributed cloud environment each

cloud has user data blocks. If any modification tried by

cloud owner an alert is send to the Trusted Third Party.

E. Cloud User

The Cloud User who has a large amount of data to be

stored in multiple clouds and have the permissions to

access and manipulate stored data. The User’s Data is

converted into data blocks. The data block is uploaded to

the cloud. The TPA views the data blocks and Uploaded

in multi cloud. The user can update the uploaded data. If

the user wants to download their files, the data’s in

multi-cloud is integrated and downloaded.

F. Disaster Recovery

Back up a file system to cloud storage, using a least-

common-denominator cloud interface, thus support

many kinds of cloud services. It uses only one cloud to

maintain one backup, and focuses on the mechanism in

local file system, not the cloud platform. Wood proposed

a new cloud service model, i.e., disaster recovery as a

cloud service, which leverages the virtual platforms in

cloud computing to provide data disaster recovery

service. They created a disaster recovery cloud model

for web site applications which illustrated that data

backup built on top of cloud resources can greatly

reduce the cost of data disaster recovery for corporations.

However, they didn’t study on how to further improve

the service quality using multiple clouds.

G. Reencryption

In this paper, we solve this problem by proposing a

time-based re-encryption scheme, which enables the

cloud servers to automatically re-encrypt data based on

their internal clocks. Our solution is built on top of a

new encryption scheme, attribute-based encryption, to

allow fine-grain access control, and does not require

perfect clock synchronization for correctness.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

223

Figure 1: System Architecture

H. Algorithm

Genetic algorithm

In the field of artificial intelligence, a genetic algorithm

(GA) is a search heuristic that mimics the process of

natural selection. This heuristic (also sometimes called a

meta heuristic) is routinely used to generate useful

solutions to optimization and search problems. Genetic

algorithms belong to the larger class of evolutionary

algorithms (EA), which generate solutions to

optimization problems using techniques inspired by

natural evolution, such as inheritance, mutation,

selection, and crossover.

Genetic algorithms find application in bioinformatics,

phylogenetic, computational science, engineering,

economics, chemistry, manufacturing, mathematics,

physics, pharmacometrics and other fields.

Methodology

In a genetic algorithm, a population of candidate

solutions (called individuals, creatures, or phenotypes)

to an optimization problem is evolved toward better

solutions. Each candidate solution has a set of properties

(its chromosomes or genotype) which can be mutated

and altered; traditionally, solutions are represented in

binary as strings of 0s and 1s, but other encodings are

also possible.

The evolution usually starts from a population of

randomly generated individuals, and is an iterative

process, with the population in each iteration is called a

generation. In each generation, the fitness of every

individual in the population is evaluated; the fitness is

usually the value of the objective function in the

optimization problem being solved. The more fit

individuals are stochastically selected from the current

population, and each individual's genome is modified

(recombined and possibly randomly mutated) to form a

new generation. The new generation of candidate

solutions is then used in the next iteration of the

algorithm. Commonly, the algorithm terminates when

either a maximum number of generations has been

produced, or a satisfactory fitness level has been reached

for the population.

A typical genetic algorithm requires:

1. A genetic representation of the solution domain,

2. A fitness function to evaluate the solution domain.

A standard representation of each candidate solution is

as an array of bits. Arrays of other types and structures

can be used in essentially the same way. The main

property that makes these genetic representations

convenient is that their parts are easily aligned due to

their fixed size, which facilitates simple crossover

operations. Variable length representations may also be

used, but crossover implementation is more complex in

this case. Tree-like representations are explored in

genetic programming and graph-form representations

are explored in evolutionary programming; a mix of

both linear chromosomes and trees is explored in gene

expression programming.

Once the genetic representation and the fitness function

are defined, a GA proceeds to initialize a population of

solutions and then to improve it through repetitive

application of the mutation, crossover, inversion and

selection operators.

Initialization

The population size depends on the nature of the

problem, but typically contains several hundreds or

thousands of possible solutions. Often, the initial

population is generated randomly, allowing the entire

range of possible solutions (the search space).

Occasionally, the solutions may be "seeded" in areas

where optimal solutions are likely to be found.

http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Heuristic_(computer_science)
http://en.wikipedia.org/wiki/Natural_selection
http://en.wikipedia.org/wiki/Metaheuristic
http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Evolutionary_algorithm
http://en.wikipedia.org/wiki/Evolutionary_algorithm
http://en.wikipedia.org/wiki/Heredity
http://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
http://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Bioinformatics
http://en.wikipedia.org/wiki/Phylogenetics
http://en.wikipedia.org/wiki/Computational_science
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Economics
http://en.wikipedia.org/wiki/Chemistry
http://en.wikipedia.org/wiki/Manufacturing
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Pharmacometrics
http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Phenotype
http://en.wikipedia.org/wiki/Chromosome
http://en.wikipedia.org/wiki/Genotype
http://en.wikipedia.org/wiki/Iteration
http://en.wikipedia.org/wiki/Iteration
http://en.wikipedia.org/wiki/Fitness_(biology)
http://en.wikipedia.org/wiki/Objective_function
http://en.wikipedia.org/wiki/Stochastics
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Genetic_representation
http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Bit_array
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Genetic_programming
http://en.wikipedia.org/wiki/Evolutionary_programming
http://en.wikipedia.org/wiki/Gene_expression_programming
http://en.wikipedia.org/wiki/Gene_expression_programming

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

224

Selection

During each successive generation, a proportion of the

existing population is selected to breed a new generation.

Individual solutions are selected through a fitness-based

process, where fitter solutions (as measured by a fitness

function) are typically more likely to be selected.

Certain selection methods rate the fitness of each

solution and preferentially select the best solutions.

Other methods rate only a random sample of the

population, as the former process may be very time-

consuming.

The fitness function is defined over the genetic

representation and measures the quality of the

represented solution. The fitness function is always

problem dependent. For instance, in the knapsack

problem one wants to maximize the total value of

objects that can be put in a knapsack of some fixed

capacity. A representation of a solution might be an

array of bits, where each bit represents a different object,

and the value of the bit (0 or 1) represents whether or not

the object is in the knapsack. Not every such

representation is valid, as the size of objects may exceed

the capacity of the knapsack. The fitness of the solution

is the sum of values of all objects in the knapsack if the

representation is valid or 0 otherwise.

In some problems, it is hard or even impossible to define

the fitness expression; in these cases, a simulation may

be used to determine the fitness function value of a

phenotype (e.g. computational fluid dynamics is used to

determine the air resistance of a vehicle whose shape is

encoded as the phenotype), or even interactive genetic

algorithms are used.

Genetic operators

The next step is to generate a second generation

population of solutions from those selected through a

combination of genetic operators: crossover (also called

recombination), and mutation.

For each new solution to be produced, a pair of "parent"

solutions is selected for breeding from the pool selected

previously. By producing a "child" solution using the

above methods of crossover and mutation, a new

solution is created which typically shares many of the

characteristics of its "parents". New parents are selected

for each new child, and the process continues until a

new population of solutions of appropriate size is

generated. Although reproduction methods that are

based on the use of two parents are more "biology

inspired", some research suggests that more than two

"parents" generate higher quality chromosomes.

These processes ultimately result in the next generation

population of chromosomes that is different from the

initial generation. Generally the average fitness will

have increased by this procedure for the population,

since only the best organisms from the first generation

are selected for breeding, along with a small proportion

of less fit solutions. These less fit solutions ensure

genetic diversity within the genetic pool of the parents

and therefore ensure the genetic diversity of the

subsequent generation of children.

Opinion is divided over the importance of crossover

versus mutation. There are many references in Fogel

(2006) that support the importance of mutation-based

search.

Although crossover and mutation are known as the main

genetic operators, it is possible to use other operators

such as regrouping, colonization-extinction, or migration

in genetic algorithms.

It is worth tuning parameters such as the mutation

probability, crossover probability and population size to

find reasonable settings for the problem class being

worked on. A very small mutation rate may lead to

genetic drift (which is non-ergodic in nature). A

recombination rate that is too high may lead to

premature convergence of the genetic algorithm. A

mutation rate that is too high may lead to loss of good

solutions, unless elitist selection is employed.

Termination

This generational process is repeated until a termination

condition has been reached. Common terminating

conditions are:

 A solution is found that satisfies minimum criteria.

 Fixed number of generations reached.

 Allocated budget (computation time/money) reached.

 The highest ranking solution's fitness is reaching or

has reached a plateau such that successive iterations

http://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
http://en.wikipedia.org/wiki/Fitness_(biology)
http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Knapsack_problem
http://en.wikipedia.org/wiki/Knapsack_problem
http://en.wikipedia.org/wiki/Computer_simulation
http://en.wikipedia.org/wiki/Computational_fluid_dynamics
http://en.wikipedia.org/wiki/Interactive_evolutionary_computation
http://en.wikipedia.org/wiki/Interactive_evolutionary_computation
http://en.wikipedia.org/wiki/Genetic_operator
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
http://en.wikipedia.org/wiki/David_B._Fogel
http://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Genetic_drift
http://en.wikipedia.org/wiki/Ergodicity
http://en.wikipedia.org/wiki/Genetic_algorithm#Elitism

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

225

no longer produce better results

 Manual inspection

 Combinations of the above

The building block hypothesis

Genetic algorithms are simple to implement, but their

behavior is difficult to understand. In particular it is

difficult to understand why these algorithms frequently

succeed at generating solutions of high fitness when

applied to practical problems. The building block

hypothesis (BBH) consists of:

 A description of a heuristic that performs adaptation

by identifying and recombining "building blocks",

i.e. low order, low defining-length schemata with

above average fitness.

 A hypothesis that a genetic algorithm performs

adaptation by implicitly and efficiently

implementing this heuristic.

Goldberg describes the heuristic as follows:

"Short, low order, and highly fit schemata are sampled,

recombined [crossed over], and resampled to form

strings of potentially higher fitness. In a way, by

working with these particular schemata [the building

blocks], we have reduced the complexity of our problem;

instead of building high-performance strings by trying

every conceivable combination, we construct better and

better strings from the best partial solutions of past

samplings.

"Because highly fit schemata of low defining length and

low order play such an important role in the action of

genetic algorithms, we have already given them a

special name: building blocks. Just as a child creates

magnificent fortresses through the arrangement of

simple blocks of wood, so does a genetic algorithm seek

near optimal performance through the juxtaposition of

short, low-order, high-performance schemata, or

building blocks."

Limitations

There are limitations of the use of a genetic algorithm

compared to alternative optimization algorithms:

Repeated fitness function evaluation for complex

problems is often the most prohibitive and limiting

segment of artificial evolutionary algorithms. Finding

the optimal solution to complex high-dimensional,

multimodal problems often requires very expensive

fitness function evaluations. In real world problems such

as structural optimization problems, a single function

evaluation may require several hours to several days of

complete simulation. Typical optimization methods can

not deal with such types of problem. In this case, it may

be necessary to forgo an exact evaluation and use an

approximated fitness that is computationally efficient. It

is apparent that amalgamation of approximate models

may be one of the most promising approaches to

convincingly use GA to solve complex real life

problems.

Genetic algorithms do not scale well with complexity.

That is, where the number of elements which are

exposed to mutation is large there is often an

exponential increase in search space size. This makes it

extremely difficult to use the technique on problems

such as designing an engine, a house or plane. In order

to make such problems tractable to evolutionary search,

they must be broken down into the simplest

representation possible. Hence we typically see

evolutionary algorithms encoding designs for fan blades

instead of engines, building shapes instead of detailed

construction plans, airfoils instead of whole aircraft

designs. The second problem of complexity is the issue

of how to protect parts that have evolved to represent

good solutions from further destructive mutation,

particularly when their fitness assessment requires them

to combine well with other parts.

The "better" solution is only in comparison to other

solutions. As a result, the stop criterion is not clear in

every problem.

In many problems, GAs may have a tendency to

converge towards local optima or even arbitrary points

rather than the global optimum of the problem. This

means that it does not "know how" to sacrifice short-

term fitness to gain longer-term fitness. The likelihood

of this occurring depends on the shape of the fitness

landscape: certain problems may provide an easy ascent

towards a global optimum, others may make it easier for

the function to find the local optima. This problem may

be alleviated by using a different fitness function,

http://en.wikipedia.org/wiki/Schema_(genetic_algorithms)
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Fitness_approximation
http://en.wikipedia.org/wiki/Fitness_approximation
http://en.wikipedia.org/wiki/Local_optimum
http://en.wikipedia.org/wiki/Global_optimum
http://en.wikipedia.org/wiki/Fitness_landscape
http://en.wikipedia.org/wiki/Fitness_landscape

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

226

increasing the rate of mutation, or by using selection

techniques that maintain a diverse population of

solutions, although the No Free Lunch theorem proves

that there is no general solution to this problem. A

common technique to maintain diversity is to impose a

"niche penalty", wherein, any group of individuals of

sufficient similarity (niche radius) have a penalty added,

which will reduce the representation of that group in

subsequent generations, permitting other (less similar)

individuals to be maintained in the population. This trick,

however, may not be effective, depending on the

landscape of the problem. Another possible technique

would be to simply replace part of the population with

randomly generated individuals, when most of the

population is too similar to each other. Diversity is

important in genetic algorithms (and genetic

programming) because crossing over a homogeneous

population does not yield new solutions. In evolution

strategies and evolutionary programming, diversity is

not essential because of a greater reliance on mutation.

Operating on dynamic data sets is difficult, as genomes

begin to converge early on towards solutions which may

no longer be valid for later data. Several methods have

been proposed to remedy this by increasing genetic

diversity somehow and preventing early convergence,

either by increasing the probability of mutation when the

solution quality drops (called triggered hyper mutation),

or by occasionally introducing entirely new, randomly

generated elements into the gene pool (called random

immigrants). Again, evolution strategies and

evolutionary programming can be implemented with a

so-called "comma strategy" in which parents are not

maintained and new parents are selected only from

offspring. This can be more effective on dynamic

problems.

GAs cannot effectively solve problems in which the only

fitness measure is a single right/wrong measure (like

decision problems), as there is no way to converge on

the solution (no hill to climb). In these cases, a random

search may find a solution as quickly as a GA. However,

if the situation allows the success/failure trial to be

repeated giving (possibly) different results, then the ratio

of successes to failures provides a suitable fitness

measure.

For specific optimization problems and problem

instances, other optimization algorithms may be

more efficient than genetic algorithms in terms of

speed of convergence. Alternative and

complementary algorithms include evolution

strategies, evolutionary programming, simulated

annealing, Gaussian adaptation, hill climbing, and

swarm intelligence (e.g.: ant colony optimization,

particle swarm optimization) and methods based on

integer linear programming. The suitability of

genetic algorithms is dependent on the amount of

knowledge of the problem; well-known problems

often have better, more specialized approaches.

Variants

Chromosome representation

The simplest algorithm represents each chromosome as

a bit string. Typically, numeric parameters can be

represented by integers, though it is possible to use

floating point representations. The floating point

representation is natural to evolution strategies and

evolutionary programming. The notion of real-valued

genetic algorithms has been offered but is really a

misnomer because it does not really represent the

building block theory that was proposed by John Henry

Holland in the 1970s. This theory is not without support

though, based on theoretical and experimental results

(see below). The basic algorithm performs crossover and

mutation at the bit level. Other variants treat the

chromosome as a list of numbers which are indexes into

an instruction table, nodes in a linked list, hashes,

objects, or any other imaginable data structure.

Crossover and mutation are performed so as to respect

data element boundaries. For most data types, specific

variation operators can be designed. Different

chromosomal data types seem to work better or worse

for different specific problem domains.

When bit-string representations of integers are used,

Gray coding is often employed. In this way, small

changes in the integer can be readily affected through

mutations or crossovers. This has been found to help

prevent premature convergence at so called Hamming

walls, in which too many simultaneous mutations (or

crossover events) must occur in order to change the

chromosome to a better solution.

Other approaches involve using arrays of real-valued

numbers instead of bit strings to represent chromosomes.

http://en.wikipedia.org/wiki/No_free_lunch_in_search_and_optimization
http://en.wikipedia.org/wiki/Genetic_programming
http://en.wikipedia.org/wiki/Genetic_programming
http://en.wikipedia.org/wiki/Evolution_strategy
http://en.wikipedia.org/wiki/Evolution_strategy
http://en.wikipedia.org/wiki/Evolutionary_programming
http://en.wikipedia.org/wiki/Evolution_strategy
http://en.wikipedia.org/wiki/Evolutionary_programming
http://en.wikipedia.org/wiki/Decision_problem
http://en.wikipedia.org/wiki/Evolution_strategy
http://en.wikipedia.org/wiki/Evolution_strategy
http://en.wikipedia.org/wiki/Evolutionary_programming
http://en.wikipedia.org/wiki/Simulated_annealing
http://en.wikipedia.org/wiki/Simulated_annealing
http://en.wikipedia.org/wiki/Gaussian_adaptation
http://en.wikipedia.org/wiki/Hill_climbing
http://en.wikipedia.org/wiki/Swarm_intelligence
http://en.wikipedia.org/wiki/Ant_colony_optimization
http://en.wikipedia.org/wiki/Particle_swarm_optimization
http://en.wikipedia.org/wiki/Integer_linear_programming
http://en.wikipedia.org/wiki/Bit_array
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/Evolution_strategy
http://en.wikipedia.org/wiki/Evolutionary_programming
http://en.wikipedia.org/wiki/John_Henry_Holland
http://en.wikipedia.org/wiki/John_Henry_Holland
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Gray_coding

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

227

Results from the theory of schemata suggest that in

general the smaller the alphabet, the better the

performance, but it was initially surprising to researchers

that good results were obtained from using real-valued

chromosomes. This was explained as the set of real

values in a finite population of chromosomes as forming

a virtual alphabet (when selection and recombination

are dominant) with a much lower cardinality than would

be expected from a floating point representation.

Elitism

A practical variant of the general process of constructing

a new population is to allow the best organism(s) from

the current generation to carry over to the next, unaltered.

This strategy is known as elitist selection and guarantees

that the solution quality obtained by the GA will not

decrease from one generation to the next.

Parallel implementations

Parallel implementations of genetic algorithms come in

two flavors. Coarse-grained parallel genetic algorithms

assume a population on each of the computer nodes and

migration of individuals among the nodes. Fine-grained

parallel genetic algorithms assume an individual on each

processor node which acts with neighboring individuals

for selection and reproduction. Other variants, like

genetic algorithms for online optimization problems,

introduce time-dependence or noise in the fitness

function.

Adaptive GAs

Genetic algorithms with adaptive parameters (adaptive

genetic algorithms, AGAs) is another significant and

promising variant of genetic algorithms. The

probabilities of crossover (pc) and mutation (pm) greatly

determine the degree of solution accuracy and the

convergence speed that genetic algorithms can obtain.

Instead of using fixed values of pc and pm, AGAs utilize

the population information in each generation and

adaptively adjust the pc and pm in order to maintain the

population diversity as well as to sustain the

convergence capacity. In AGA (adaptive genetic

algorithm), the adjustment of pc and pm depends on the

fitness values of the solutions. In CAGA (clustering-

based adaptive genetic algorithm),
[13]

 through the use of

clustering analysis to judge the optimization states of the

population, the adjustment of pc and pm depends on

these optimization states. It can be quite effective to

combine GA with other optimization methods. GA tends

to be quite good at finding generally good global

solutions, but quite inefficient at finding the last few

mutations to find the absolute optimum. Other

techniques (such as simple hill climbing) are quite

efficient at finding absolute optimum in a limited region.

Alternating GA and hill climbing can improve the

efficiency of GA while overcoming the lack of

robustness of hill climbing.

This means that the rules of genetic variation may have a

different meaning in the natural case. For instance –

provided that steps are stored in consecutive order –

crossing over may sum a number of steps from maternal

DNA adding a number of steps from paternal DNA and

so on. This is like adding vectors that more probably

may follow a ridge in the phenotypic landscape. Thus,

the efficiency of the process may be increased by many

orders of magnitude. Moreover, the inversion operator

has the opportunity to place steps in consecutive order or

any other suitable order in favor of survival or efficiency.

(See for instance or example in travelling salesman

problem, in particular the use of an edge recombination

operator.)

A variation, where the population as a whole is evolved

rather than its individual members, is known as gene

pool recombination.

A number of variations have been developed to attempt

to improve performance of GAs on problems with a high

degree of fitness epistasis, i.e. where the fitness of a

solution consists of interacting subsets of its variables.

Such algorithms aim to learn (before exploiting) these

beneficial phenotypic interactions. As such, they are

aligned with the Building Block Hypothesis in

adaptively reducing disruptive recombination.

Prominent examples of this approach include the mGA,

GEMGA and LLGA.

Problem domains

Problems which appear to be particularly appropriate for

solution by genetic algorithms include timetabling and

scheduling problems, and many scheduling software

packages are based on GAs
 [citation needed]

. GAs has also

been applied to engineering. Genetic algorithms are

http://en.wikipedia.org/wiki/Genetic_algorithm#cite_note-13
http://en.wikipedia.org/wiki/Chromosomal_inversion
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/Edge_recombination_operator
http://en.wikipedia.org/wiki/Edge_recombination_operator
http://en.wikipedia.org/wiki/Timeline
http://en.wikipedia.org/wiki/Wikipedia:Citation_needed
http://en.wikipedia.org/wiki/Engineering

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

228

often applied as an approach to solve global

optimization problems.

As a general rule of thumb genetic algorithms might be

useful in problem domains that have a complex fitness

landscape as mixing, i.e., mutation in combination with

crossover, is designed to move the population away

from local optima that a traditional hill climbing

algorithm might get stuck in. Observe that commonly

used crossover operators cannot change any uniform

population. Mutation alone can provide periodicity of

the overall genetic algorithm process (seen as a Markov

chain).

Examples of problems solved by genetic algorithms

include: mirrors designed to funnel sunlight to a solar

collector, antennae designed to pick up radio signals in

space, and walking methods for computer figures.

In his Algorithm Design Manual, Skiena advises against

genetic algorithms for any task:

It is quite unnatural to model applications in terms of

genetic operators like mutation and crossover on bit

strings. The pseudo-biology adds another level of

complexity between you and your problem. Second,

genetic algorithms take a very long time on nontrivial

problems. [...] [T]he analogy with evolution—where

significant progress require millions of years—can be

quite appropriate.

I have never encountered any problem where genetic

algorithms seemed to me the right way to attack it.

Further, I have never seen any computational results

reported using genetic algorithms that have favorably

impressed me. Stick to simulated annealing for your

heuristic search voodoo needs.

III. RESULTS AND DISCUSSION

This section first explains how the data used in

experiments were generated and the experimental

environment, and then gives the experimental results of

a variety of cases.

A. Data and Simulation Environment

We consider an instance with 20 server clusters (m = 20)

and 100 clients (n = 100). The weight of each link is

bounded in the range [0; 5] in general. That is, the

normalizing factor of the first term in Objective (3) is 5

* 100 = 500, while that of the second term is 100. If the

link is infeasible, its weight is set 1000, which is viewed

as infinity in our experiments.

In our experiments, unless otherwise described in the

rest of this paper, our GA algorithm applies the

parameter settings in Table I, in which there are 200

generations at most; there are 50 chromosomes in a

generation; the time period between two time steps is the

time taken by 20 generations of the main loop of the GA

algorithm. That is, clients move at each time step, and

their corresponding criteria are measured at every 20

generations. In addition, after a lot of tests, are chosen.

Our simulation was tested on an Intel Core i7-3770 CPU

@ 3.40 GHz with 16 GB memory. The average running

time for determining a placement of an instance (i.e., 20

generations) is about 0.0005 seconds. It implies that our

GA has the ability to efficiently cope with the CMS-

dynMLB problem.

B. Experimental Results

To the best of our understanding, there were no previous

works that studied our concerned problem. As a result,

we conduct a comprehensive experimental analysis on

adjustment of parameters. First, in order to observe the

convergence of the best cost values in our GA method,

we plot the best cost values versus the number of

generations of our GA under a variety of parameters in

Figure 2, from which each plot is convergent to a fixed

value, which implies that our GA has the ability to make

the solutions to be convergent.

In order to demonstrate the ability of our approach to

adapt the time changes (where we suppose that the

topology graph changes in each 20 generations), we run

200 generations of our GA on the test instance in a

dynamic scenario, and its plots of best cost values versus

the iteration number under three different m values are

given in Figure 3. The dynamic scenario assumes that all

of the clients change their locations in each 20

generations in Figure 3, from which we observe that

http://en.wikipedia.org/wiki/Global_optimization
http://en.wikipedia.org/wiki/Global_optimization
http://en.wikipedia.org/wiki/Fitness_landscape
http://en.wikipedia.org/wiki/Fitness_landscape
http://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Local_optima
http://en.wikipedia.org/wiki/Hill_climbing
http://en.wikipedia.org/wiki/Markov_chain
http://en.wikipedia.org/wiki/Markov_chain
http://en.wikipedia.org/wiki/Steven_Skiena
http://en.wikipedia.org/wiki/Simulated_annealing

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

229

every time when clients change their location in each 20

generations, the cost value goes to a large value, and

later converges by our GA approach. In addition, we

also observe that from (a) to (c) more clients provide

more resources, so that the plots turn out to be a plat

region more quickly.

IV. CONCLUSION

A genetic algorithm approach for optimizing the

dynamic multi-service load balancing in cloud-based

multimedia system (CMS-dynMLB) has been proposed

and implemented. The main difference of our model

from previous models is that we consider a practical

multi-service dynamic scenario in which at different

time steps, clients can change their location and each

server cluster only handles a specific type of multimedia

tasks, so that two performance objectives are optimized

at the same time. The main features of this paper include

not only the proposal of a mathematical formulation of

the CMS-dynMLB problem but also a theoretical

analysis for the algorithm convergence. Detailed

simulation has also been conducted to show the

performance of our GA approach.

V. REFERENCES

[1] W. Zhu, C. Luo, J. Wang, and S. Li, ―Multimedia cloud

computing:An emerging technology for providing multimedia
services and applications,‖ IEEE Signal Processing Magazine,
vol. 28, no. 3, pp. 59–69, 2011.

[2] C.F.Lai, Y.M.Huang and H.C. Chao, ―DLNA-based multimedia
sharing system over OSGI framework with extension to P2P
network,‖IEEE Systems Journal, vol. 4, no. 2, pp. 262–270,
2010.

[3] W. Hui, H. Zhao, C. Lin, and Y. Yang, ―Effective load
balancing for cloud-based multimedia system,‖ in Proceedings
of 2011 International Conference on Electronic & Mechanical
Engineering and Information Technology. IEEE Press, 2011,
pp. 165–168.

[4] C.Y.Chen, H.C.Chao, S.Y.Kuo, and K.D.Chang, ―Rule-based
intrusion detection mechanism for IP multimedia subsystem,‖
Journal of Internet Technology, vol. 9, no. 5, pp. 329–336,
2008.

[5] R.Yavatkar, D.Pendarakis, and R. Guerin, ―A framework for
policy based admission control,‖ Internet Requests for
Comments, RFC Editor, RFC 2753, 2000.

[6] D.Niyato and E.Hossain, ―Integration of WiMAX and Wi-Fi:
Optimal pricing for bandwidth sharing,‖ IEEE Communication
Magazine, vol. 45, no. 5, pp. 140–146, 2007.

[7] C.Y.Chang, T.Y.Wu, C.C.Huang, A.J.W.Whang, and
H.C.Chao, ―Robust header compression with load balance and
dynamic bandwidth aggregation capabilities in WLAN,‖ Journal
of Internet Technology, vol. 8, no. 3, pp. 365–372, 2007.

[8] J.Sun, X.Wu, and X.Sha, ―Load balancing algorithm with
multiservice in heterogeneous wireless networks,‖ in
Proceedings of 6th International ICST Conference on
Communications and Networking in China (ChinaCom 2011).
IEEE Press, 2011, pp. 703–707.

[9] H.Son, S.Lee, S.C.Kim, and Y.S.Shin, ―Soft load balancing over
heterogeneous wireless networks,‖ IEEE Transactions on
Vehicular Technology, vol. 57, no. 4, pp. 2632–2638, 2008.

[10] L.Zhou, H.C.Chao, and A.V.Vasilakos, ―Joint forensics-
scheduling strategy for delay-sensitive multimedia applications
over heterogeneous networks,‖ IEEE Journal on Selected Areas
of Communications, vol. 29, no. 7, pp. 1358–1367, 2011.

[11] X.Nan, Y.He, and L.Guan, ―Optimal resource allocation for
multimedia cloud based on queuing model,‖ in Proceedings of
2011 IEEE 13th International Workshop on Multimedia Signal
Processing (MMSP 2011). IEEE Press, 2011, pp. 1–6.

[12] M.Garey and D. Johnson, Computers and Intractability - A
Guide to the Theory of NP-Completeness. Freeman, San
Francisco, 1979.

[13] S.Kirkpatrik, C.Gelatt, and M.Vecchi, ―Optimization by
simulated annealing,‖ Science, vol. 220, pp. 671–680, 1983.

[14] J. H. Holland, Adaptation in Natural and Artificial Systems,
University of Michigan Press, 1975.

[15] J.Kennedy and R.Eberhart, ―Particle swarm optimization,‖ in
Proceedings of IEEE International Conference on Neural
Networks. IEEE Press, 1995, p. 1942V1948.

[16] Y.Shi and R.Eberhart, ―A modified particle swarm optimizer,‖
in Proceedings of IEEE International Conference on
Evolutionary Computation. IEEE Press, 1998, pp. 69–73.

[17] X.Zhang, S.Hu, D.Chen, and X.Li, ―Fast covariance matching
with fuzzy genetic algorithm,‖ IEEE Transactions on Industrial
Engineering, vol. 8, no. 1, pp. 148–157, 2012.

[18] W.Ip, D.Wang, and V.Cho, ―Aircraft ground service scheduling
problems and their genetic algorithm with hybrid assignment
and sequence encoding scheme,‖ IEEE Systems Journal, 2012,
to appear.

[19] F.Gonzalez-Longatt, P.Wall, P.Regulski, and V.Terzija,
―Optimal electric network design for a large offshore wind farm
based on a modified genetic algorithm approach,‖ IEEE
Systems Journal, vol. 6, no. 1, pp. 164–172, 2012.

[20] H.Cheng and S.Yang, ―Genetic algorithms with immigrants
schemes for dynamic multicast problems in mobile ad hoc
networks,‖ Engineering Applications of Artificial Intelligence,
vol. 23, no. 5, pp. 806–819, 2010.

[21] R.Van den Bossche, K.Vanmechelen, and J.Broeckhove, ―Cost-
optimal scheduling in hybrid IaaS clouds for deadline
constrained workloads,‖ in Proceedings of 2010 IEEE 3rd
International Conference on Cloud Computing. IEEE Press,
2010, pp. 228–235.

[22] K.P.Chow and Y.K.Kwok, ―On load balancing for distributed
Multi agent computing,‖ IEEE Transactions on Parallel and
Distributed Systems, vol. 13, no. 8, pp. 787–801, 2002.

[23] X.Qin, H.Jiang, A.Manzanares, X.Ruan, and S.Yin,
―Communication aware load balancing for parallel applications
on clusters,‖ IEEE Transactions on Computers, vol. 59, no. 1,
pp. 42–52, 2010.

[24] A.Y.Zomaya and Y.H.Teh, ―Observations on using genetic
algorithms for dynamic load-balancing,‖ IEEE Transactions on
Parallel and Distributed Systems, vol. 12, no. 9, pp. 899–911,
2001.

[25] Y.M.Huang, M.Y.Hsieh, H.C.Chao, S.H.Hung, and J.H.Park,
―Pervasive, secure access to a hierarchical-based healthcare
monitoring architecture in wireless heterogeneous sensor
networks,‖ IEEE Journal on Selected Areas of Communications,
vol. 27, no. 4, pp. 400–411, 2009.

[26] L.Yang and M.Guo, High-performance Computing: Paradigm
and Infrastructure John Wiley and Sons, 2006.

[27] T.Y.Wu, H.C.Chao, and C.Y.Huang, ―A survey of mobile IP in
cellular and mobile ad-hoc network environments,‖ Ad Hoc
Networks Journal, vol. 3, no. 3, pp. 351–370, 2005.

[28] Q.Yuan, F.Qian, and W.Du, ―A hybrid genetic algorithm with
the Baldwin effect,‖ Information Sciences, vol. 180, no. 5, pp.
640–652, 2010.

[29] S.Ross, Introduction to Probability Models, 10th ed. Academic
Press, 2009.

